Подпишись и читай
самые интересные
статьи первым!

Плюсы и минусы тепловых электростанций (ТЭС). Как работает тепловая электростанция (ТЭЦ)? Как работает тэс принцип работы

У этой паровой турбины хорошо видны лопатки рабочих колес.

Тепловая электростанция (ТЭЦ) использует энергию, высвобождающуюся при сжигании органического топлива - угля, нефти и природного газа - для превращения воды в пар высокого давления. Этот пар, имеющий давление около 240 килограммов на квадратный сантиметр и температуру 524°С (1000°F), приводит во вращение турбину. Турбина вращает гигантский магнит внутри генератора, который вырабатывает электроэнергию.

Современные тепловые электростанции превращают в электроэнергию около 40 процентов теплоты, выделившейся при сгорании топлива, остальная сбрасывается в окружающую среду. В Европе многие тепловые электростанции используют отработанную теплоту для отопления близлежащих домов и предприятий. Комбинированная выработка тепла и электроэнергии увеличивает энергетическую отдачу электростанции до 80 процентов.

Паротурбинная установка с электрогенератором

Типичная паровая турбина содержит две группы лопаток. Пар высокого давления, поступающий непосредственно из котла, входит в проточную часть турбины и вращает рабочие колеса с первой группой лопаток. Затем пар подогревается в пароперегревателе и снова поступает в проточную часть турбины, чтобы вращать рабочие колеса с второй группой лопаток, которые работают при более низком давлении пара.

Вид в разрезе

Типичный генератор тепловой электростанции (ТЭЦ) приводится во вращение непосредственно паровой турбиной, которая совершает 3000 оборотов в минуту. В генераторах такого типа магнит, который называют также ротором, вращается, а обмотки (статор) неподвижны. Система охлаждения предупреждает перегрев генератора.

Выработка энергии при помощи пара

На тепловой электростанции топливо сгорает в котле, с образованием высокотемпературного пламени. Вода проходит по трубкам через пламя, нагревается и превращается в пар высокого давления. Пар приводит во вращение турбину, вырабатывая механическую энергию, которую генератор превращает в электричество. Выйдя из турбины, пар поступает в конденсатор, где омывает трубки с холодной проточной водой, и в результате снова превращается в жидкость.

Мазутный, угольный или газовый котел

Внутри котла

Котел заполнен причудливо изогнутыми трубками, по которым проходит нагреваемая вода. Сложная конфигурация трубок позволяет существенно увеличить количество переданной воде теплоты и за счет этого вырабатывать намного больше пара.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

ТЭС – электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива (рис.Д.1).

Различают тепловые паротурбинные электростанции (ТПЭС), газотурбинные (ГТЭС) и парогазовые (ПГЭС). Подробнее остановимся на ТПЭС.

Рис.Д.1 Схема ТЭС

На ТПЭС тепловая энергия используется в парогенераторе для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрического генератора. В качестве топлива на таких ТЭС используют уголь, мазут, природный газ, лигнит (бурый уголь), торф, сланцы. Их КПД достигает 40%, мощность – 3 ГВт. ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называют конденсационными электростанциями (официальное название в РФ – Государственная районная электрическая станция, или ГРЭС). На ГРЭС вырабатывается около 2/3 электроэнергии, производимой на ТЭС.

ТПЭС оснащенные теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ); ими вырабатывается около 1/3 электроэнергии, производимой на ТЭС.

Известны четыре типа угля. В порядке роста содержания углерода, а тем самым и теплотворной способности эти типы располагаются следующим образом: торф, бурый уголь, битуминозный (жирный) уголь или каменный уголь и антрацит. В работе ТЭС используют в основном первые два вида.

Уголь не является химически чистым углеродом, также в нем содержится неорганический материал (в буром угле углерода до 40%), который остается после сгорания угля в виде золы. В угле может содержаться сера, иногда в составе сульфида железа, а иногда в составе органических компонентов угля. В угле обычно присутствуют мышьяк, селен, а также радиоактивные элементы. Фактически уголь оказывается самым грязным из всех видов ископаемого топлива.

При сжигании угля образуются диоксид углерода, оксид углерода, а также в больших количествах оксиды серы, взвешенные частицы и оксиды азота. Оксиды серы повреждают деревья, различные материалы и оказывают вредное влияние на людей.

Частицы, выбрасываемые в атмосферу при сжигании угля на электростанциях, называются «летучей золой». Выбросы золы строго контролируются. Реально попадает в атмосферу около 10% взвешенных частиц.

Работающая на угле электростанция мощностью 1000 МВт сжигает 4-5 млн. т угля в год.

Поскольку в Алтайском крае отсутствует добыча угля, то будем считать, что его привозят из других регионов, и для этого прокладывают дороги, тем самым, изменяя природный ландшафт.

ПРИЛОЖЕНИЕ Е

Пару недель назад во всех кранах Новодвинска исчезла горячая вода — здесь не нужно искать какие-то происки недругов, просто в Новодвинск пришли гидравлические испытания, процедура, необходимая для подготовки городской энергетики и коммунальных коммуникаций к новому отпительному сезону. Без горячей воды как-то сразу ощутил себя деревенским жителем — кастрюльки с кипятком на плите — помыться-побриться,- мытье посуды в холодной воде и т.д.

Вместе с тем в голове появился вопрос: а как все-таки «делается» горячая вода, и как она попадает в краны в наших квартирах?

Конечно, вся городская энергетика «запитана» на Архангельский ЦБК, точнее на ТЭС-1, куда я и направился, чтобы узнать откуда берется горячая вода и тепло в наших квартирах. Помочь в моем поиске согласился главный энергетик Архангельского ЦБК Андрей Борисович Зубок, ответивший на множество моих вопросов.

Вот, кстати, рабочий стол — главного энергетика Архангельского ЦБК — монитор, куда выводятся самые разнообразные данные, многоканальный телефон, который неоднократно звонил в ходе нашей беседы, стопка документов…

Андрей Борисович рассказал мне, как «в теории» работает ТЭС-1, главная энергетическая установка комбината и города. Сама аббревиатура ТЭС — тепло-электро станция — подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашем холодном климате.

Схема работы ТЭС-1:


Любая тепло-электростанция начинается с главного щита управления, куда стекается вся информация о процессах, происходящих в котлах, о работе турбин и т.д.

Здесь на многочисленных индикаторах и циферблатах видна работа турбин, генераторов и котлов. Отсюда управляют производственным процессом станции. А процесс этот весьма сложный = чтобы разобраться во всем, нужно не мало учиться.



Ну а рядом — находится сердце ТЭС-1 — паровые котлы. Их на ТЭС-1 восемь. Это огромные сооружения, высота которых достигает 32 метров. Именно в них и происходит главный процесс преобразования энергии, благодаря которому и появляется и электричество, и горячая вода в наших домах — выработка пара.

Но всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. На ТЭС-1 основное топливо — это уголь, который везут сюда из Воркуты по железной дороге.

Часть его складируется, другая часть идёт по конвейерам на станцию, где сам уголь сначала измельчается до пыли и потом подаётся по специальным «пылепроводам» в топку парового котла. Для розжига котла используют мазут, а потом по мере увеличения давления и температуры переводят его на угольную пыль.

Паровой котел - это агрегат для получения пара высокого давления из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. Весит это сооружение более 1000 тонн! Производительность котла - 200 тонн пара в час.

Внешне котел напоминает сплетение труб, вентелей и каких-то механизмов. Рядом с котлом жарко, ведь пар на выходе из котла имеет температуру в 540 градусов.

Есть на ТЭС-1 и другой котел — современный, установленный несколько лет назад котел Metso с решеткой Hybex. Управление этим энергоагрегатом выведено на отдельный пульт.

Агрегат работает по инновационной технологии - сжигание топлива в пузырьковом кипящем слое (Hybex). Для получения пара здесь сжигают кородревесное топливо (270 тыс. тонн в год) и осадок сточных вод (80 тыс. тонн в год), его привозят сюда с очистных сооружений.



Современный котел — это тоже огромное сооружение, высота которого более 30 метров.

Ил и кородревесное топливо попадают в котел по этим транспортерам.

А отсюда, уже после подготовки топливная смесь попадает непосредственно в топку котла.

В здании нового котла на ТЭС-1 есть лифт. Вот только этажей в привычном для обычного горожанина виде здесь нет — есть высота отметки обслуживания — вот и лифт движется от отметки к отметке.

На станции работает больше 700 человек. Работы хватает всем — оборудование требует обслуживания и постоянного контроля за ним со стороны персонала. Условия работы на станции непростые — высокие температуры, влажность, шум, угольная пыль.

А здесь рабочие готовят площадку под строительство нового котла — его возведение начнется уже в будущем году.

Здесь готовится вода для котла. В автоматическом режиме воду умягчают для того, чтобы снизить отрицательное воздействие на котел и лопатки турбины (уже в то время когда вода превратится в пар).


А это турбинный зал — сюда приходит пар из котлов, здесь он крутит мощные турбины (всего их пять).

Вид со стороны:

В этом зале пар работает: проходя через пароперегреватели, пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Множество манометров.

А вот она — турбина, где и работает пар и «крутит» генератор. Это турбина №7 и, соответственно, генератор №7.

Восьмой генератор и восьмая турбина. Мощности генераторов разные, но в сумме они способны выдавать около 180 МВт электроэнергии — этого электричества хватает и на нужды самой станции (а это около 16%), и на нужды производств Архангельского ЦБК, и на обеспечение «сторонних потребителей» (в город уходит около 5% выработанной энергии).

Переплетение труб завораживает.

Горячая вода для отопления (сетевая) получается путем нагревания воды паром в теплообменниках (бойлерах). В сеть она закачивается вот такими насосами — их на ТЭС-1 восемь. Вода «для отопления», к слову, специально подготавливается и очищается и на выходе со станции соответствует требованиям, предъявляемым к питьевой воде. Теоретически эту воду можно пить, но все-таки пить ее не рекомендуется из-за наличия большого количества продуктов коррозии в трубах тепловых сетей.



А в этих башнях — участке химического цеха ТЭС-1,- готовится вода, которую добавляют в теплосистему, ведь часть горячей воды расходуется — ее необходимо пополнять.

Дальше нагретая вода (теплоноситель) следует по трубопроводам различного сечения, ведь ТЭС-1 отапливает не только город, но и производственные помещения комбината.

А электричество «выходит» со станции через через распределительные электрические устройства и трансформаторы и передается в энергосистему комбината и города.


Конечно, на станции есть труба — та самая «фабрика облаков». На ТЭС-1 таких труб три. Самая высокая — более 180 метров. Как оказалось труба — это действительно пустотелая конструкция, куда сходятся газоходы от различных котлов. Перед попаданием в трубу дымовые газы проходят систему очистки от золы. На новом котле это происходит в электрофильтре. Эффективная степень очистки дымовых газов составляет 99.7%. На угольных котлах очистка производится водой,- эта система менее эффективна, но все равно большая часть «выбросов» улавливается.



Сегодня на ТЭС-1 полным ходом идут ремонты: и если здание можно отремонтировать в любое время…

…то производить капитальный ремонт котлов или турбин можно только летом в период пониженных нагрузок. Кстати, именно для этого и проводят «гидравлические испытания». Программное повышение нагрузки на системы теплоснабжения необходимо, во-первых, для проверки надежности коммунальных коммуникаций, а, во-вторых, энергетики имеют возможность «слить» теплоноситель из системы и заменить, например, участок трубы. Ремонт энергетического оборудования – дорогостоящее мероприятие, требующее особой квалификации и допуска от специалистов.

За пределами комбината горячая вода (она же теплоноситель) течет по трубам — три «выхода» в город обеспечивают бесперебойную работу отопительной системы города. Система замкнута, вода в ней постоянно циркулирует. В самое холодное время года — температура воды на выходе со станции составляет 110 градусов Цельсия, возвращается теплоноситель, остыв на 20-30 градусов. Летом температуру воды снижают — нормативно на выходе со станции она составляет 65 градусов Цельсия.

Кстати, отключают горячую воду и отопление не на ТЭС, а непосредственно в домах — этим занимаются управляющие компании. ТЭС «отключает» воду лишь однажды — после гидравлических испытаний, чтобы произвести ремонт. После ремонтов энергетики постепенно заполняют систему водой — в городе есть специальные механизмы для спуска воздуха из системы — совсем как в батареях в обычном жилом доме.

Конечный пункт горячей воды — тот самый кран в любой из городских квартир, вот только сейчас воды в нем нет — гидравлические испытания.

Вот так непросто «делается» то, без чего трудно представить жизнь современного горожанина — горячая вода.

Тепловые электростанции представляют собой устройство, специализация которого основывается на вырабатывании электроэнергии. Электроэнергия производится путём преобразования и в ходе переработки тепловой энергии. теплота образуется при сгорании топливного ресурса, которым могут быть разновидности горючих ископаемых. Способность преобразовывать энергию природных ресурсов в электроэнергию делает ТЭС неотъемлемой частью жизни любого современного человека.

Маломощные тепловые электростанции широко используются в различных областях. Например, они могут обогревать и подавать электроэнергию в школы и бассейны, клиники и спортивные комплексы. Их можно использовать для создания нормальных рабочих условий во времянках и вагончиках при строительстве, в других областях народного хозяйства.

У данных электростанций масса плюсов и очень мало минусов. Мини теплоэлектростанции состоят из нескольких приборов и работа их полностью автоматизирована. Также ТЭС может работать на любом виде топлива , что позволяет использовать ее в любых условиях.

Самым основным плюсом в работе данной техники можно считать то, что оно позволяет не зависеть от роста цен на тепло и электроносители и иметь свою независимую мини теплоэлектростанцию. Это возможность экономить средства, выделяемые на это практически на 100%.

Возможности оборудования практически безграничны, ведь может обеспечивать, по сути, любое помещение по разряду не хуже централизованных сетей, а обойдется намного дешевле. Первоначальные затрат быстро окупятся и расходы будут минимальными лишь на топливо для ТЭЦ. Причем его тоже можно варьировать в зависимости от условий эксплуатации, выбирая более дешевый вариант.


Преимущества ТЭС

  • Сравнительно низкий ценовой показатель теплового ресурса, использующегося в ходе работы ТЭС, в сравнении с ценовыми категориями аналогичного ресурса, применяемого на атомных электростанциях.
  • Строительство ТЭС, а также доведение объекта до состояния активной эксплуатации задействует меньшее привлечение денежных средств.
  • ТЭС может территориально быть расположена в любой географической точке. Организация работы станции данного типа не потребует привязывания местонахождения станционной установки в непосредственной близости с определёнными природными ресурсами. Топливо может доставляться к станции из любого места мира с помощью автомобильного или железнодорожного видов транспорта.
  • Сравнительно небольшой масштаб ТЭС позволяет производить их установку в условиях стран, где земля является в силу малой территории ценным ресурсом, к тому же существенно снижается процент земельной площади, попавшей в зону отчуждения и вывода из нужд сельского хозяйства.
  • Стоимость топлива, вырабатываемого ТЭС, по сравнении с аналогичным дизельным, будет дешевле .
  • Вырабатываемая энергии не зависит от сезонного колебания мощности, что свойственно ГЭС.
  • Обслуживание и эксплуатационный процесс ТЭС характеризуются простотой.
  • Технологический процесс возведения ТЭС массово освоен, что даёт возможность для их быстрого строительства, существенно экономящего при этом временные ресурсы.
  • При завершении срока службы ТЭС их достаточно легко подвергнуть утилизации. Инфраструктурное подразделение ТЭС более долговечно по сравнению с основным оборудованием, представленным котлами и турбинами. Системы водоснабжения и теплоснабжения способны ещё длительный период времени после окончания срока службы сохранять свои качественные и технологические характеристики, они могут функционировать дальше после замены турбин и котлов.
  • В ходе работы происходит выделение воды и пара, что может быть задействовано для организации отопительного процесса или в иных технологических задачах.
  • Являются производителями около 80-ти % всей электроэнергии страны .
  • Одновременная выработка электроэнергии и осуществление тепловой подачи при длительном сроке эксплуатации делают ТЭС экономичными системами.

Недостатки ТЭС

  • Нарушение экологического равновесия и загрязнение атмосферы в процессе выброса в неё дыма и копоти, сернистых и азотистых соединений в большом количестве. Деятельность ТЭС способна спровоцировать явление «парникового эффекта» и прохождение кислотных дождей. Кроме того, создание и передача электроэнергии приводят к электромагнитному загрязнению окружающей среды.
  • В связи с добычей для эксплуатирования и функционирования ТЭС большого количества угля возникает нужда в шахтах, при создании которых происходит нарушение естественного природного рельефа.
  • Нарушение теплового баланса водоёмов , который происходит в процессе сброса ТЭС охлаждающей воды, что приводит к повышению температурных показателей.
  • Вместе с загрязняющими атмосферу газами ТЭС производит выброс некоторых веществ, принадлежащих к группе радиоактивных, содержание которых в большей или меньшей степени прослеживается в топливе.
  • В ходе эксплуатации ТЭС используются те природные ресурсы, естественное возобновление которых невозможно, поэтому количество этих ресурсов постепенно уменьшается.
  • Наличие сравнительно низкой экономичности.
  • ТЭС сложно справляются с необходимостью принимать участие в покрытии переменной части суточного графика электрической нагрузки.
  • Способность ТЭС работать на привозном топливе содержит в себе проблему, связанную с точной организацией процесса поставки топливных ресурсов.
  • Работа ТЭС влечёт за собой более высокие расходы по их обслуживанию по сравнению с ГЭС.

В каких случаях выбирают данное оборудование

Когда затраты на передачу или производство электроэнергии высоки и бюджет организации или частного лица не может их осилить. Если централизованные системы по подаче тепла и электричества не могут осилить дополнительно возведенные или введенные в эксплуатацию площади.

Когда количества электричества просто недостаточно для бесперебойной работы современного оборудования и приборов. Либо оно имеет низкое качество. Также нельзя забывать про экологическую составляющую оборудования, которое позволяет выделять в атмосферу вредных веществ.

Универсальность и экономичность

Электростанции могут работать на дровах или угле, газе, дизельном топливе. Обычно дизельное топливо применяется редко в виду его дороговизны и вредных выделений. Есть несколько модификаций данных установок и различают:

  1. Турбины, работающие на пару.
  2. Газовые турбины.
  3. Газопоршневые генераторы.

Выбор ТЭС зависит от необходимой мощности для потребителя. Самыми популярными считаются газопоршневые, однако, их мощность всего 80 мВт .

Абсолютные выгоды на фоне кризиса

В целом плюсов значительно больше, чем минусов , и для некоторых предприятий и учреждений приобретение мини ТЭС отличный выход из положения, особенно, если город растет, а возможностей прокладывать тепло и электро сети, нет. Либо они загружены настолько, что в любом случае подачи тепла или света будет недостаточно. Также это может стать отличным решением в загородной зоне, где вообще нет централизованной подачи тепла и электроэнергии, но жилье, тем не менее, строится. Особенно оценят возможности таких установок и рабочие, которые ремонтируют трассы и дороги, буровики, нефтяники, которые передвигаются по стране, но у них нет возможности каждый раз подключаться к централизованной подаче света и тепла.

Возможно, ТЭС пригодится военным гарнизонам, которые несут службу далеко от городков, с полным обеспечением комфортных условий. Словом данное оборудование может стать незаменимым в областях, где особенно ценится возможность получить полноценное тепло, электричество и даже холодный воздух для кондиционеров при необходимости. Небольшое оборудование можно легко транспортировать специальным транспортом и использовать по мере необходимости.

Будут выгодны данные ТЭС и предпринимателям, которые занимают площади в гаражах, складах, и не подключены к централизованному теплу, а свет используют по высоким городским тарифам. Это поможет существенно сэкономить на материальных затратах при работе и позволить не зависеть от монополистов тепла и света.

Идеальные возможности мини версии ТЭС могут соперничать разве что с крупными образцами ТЭС или гидроэлектростанциями, однако мобильность и автоматизированность небольшого оборудования перевешивает в любом случае.

Выводы

В связи с тем, что проблема энергетики актуальны для современности, встаёт вопросы об организации обеспечения населения электроэнергией, не допуская при этом существенных финансовых и временных затрат при сохранении благоприятной экологической обстановки. Одним из вариантом решения поставленной задачи становится строительство и эксплуатация ТЭС.

Включайся в дискуссию
Читайте также
Достоинства геотермальной энергетики
Как работает тепловая электростанция (ТЭЦ)?
Романская живопись Все о романском стиле